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Boundary-Marching Method for Discontinuity

Analysis in Waveguides of Arbitrary

Cross Section
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Abstract—A recursive algorithm previously used in diffusion
problems of geophysics and in electrostatics, is extended to wave

phenomena. It is used to construct a matrix representation for

an infinitely long waveguide of arbitrary crms-sectional shape.
This representation is used in finite element analysis of wave-

guide dkcontinuities. In numerical tests, scattering matrices for
the long guides converge to nearly full word-length in 6–7 re-

cursion steps, and discontinuity y characteristics are within l%-

2% of known results where they exist.

I. INTRODUCTION

F INITE elements formulated in terms of vector field

components have been widely used in characterizing

arbitrarily shaped waveguides. Recently, the finite ele-

ment method has also been successfully applied in ana-

lyzing some subclasses of waveguide discontinuity prob-

lems which are essentially two-dimensional, such as

E-Plane and H-plane discontinuities. However, a general

waveguide discontinuity is three-dimensional. It joins two

or more waveguides, possibly dissimilar, it has an arbi-

trary shape in all directions, and may contain inhomoge-

neous materials. In such cases, a full three dimensional

analysis is required. When using the finite element

method, one also needs to model the two infinite wave-

guides directly attached to the discontinuity section. The

most common way of dealing with such infinite guides is

to truncate the guides at a distance sufficiently far from

the discontinuity, with a large number of mesh nodes.

Proper boundary conditions are then applied at the trun-

cated surfaces, assuming that the field decays signifi-

cantly before reaching the truncations. This approach re-

sults in an undesirably large mesh and therefore is not

practical in many three-dimensional problems. For some

special cases, where the waveguide geometry is rectan-

gular, circular or elliptical, an equivalent boundary con-

dition, derived from analytically known guided modes,

may be used to truncate the mesh at ~asmaller distance

from the discontinuity. However, if the geometry of the

waveguide structure is more general, tlhere is no analytic

solution for the waveguide and an equivalent boundary
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condition for the infinite guide section cannot be found

easily. This is especially true in the case of inhornoge-

neously dielectric-loaded waveguides.

This paper presents a very general finite element scheme

which can be used to model an arbitrarily-shaped guide

that may be inhornogeneous in the transverse direction.

The algorithm uses a simple recursive method to generate

a sub%atrix wlhich relates the field characteristics on the

near-field surface to the field conditions on the far-field

surface. As a ]result, it can be used to truncate the finite

element mesh at a distance very close to the discontinuity

without losing any generality, for any arbitrarily-shaped

guide. This procedure resembles the “roof-raising” pro-

cess used in static and diffusion fields by Kisak, Silvester

and Telford [1.], and the related but more general two-

dimensional “ballooning” algorithm applied to electro-

statics problems by Silvester, Lowther, Carpenter and

Wyatt [2].

Waveguide analysis with the finite element method-has

long been troubled by the appearance of spurious modes.

Although these are commonly encountered in eigenvalue

problems, it has been shown that spurious modes can af-

fect solutions to deterministic problems also [3], [4]. The

orthospectral (‘’spectrally correct”) elements obtained by

using mixed-o rder approximating functions on hexahedra

[5], [6] have been shown to produce solutions free of spu-

rious modes. All the results reported in this paper are

based-on elements of this type and, as would be expected,

no spurious-mode corruption of solutions has been en-

countered.

II. VARIATIONAL FORMULATION

The general configuration of the class of problems con-

sidered here is illustrated in Fig. 1. The waveguide dis-

continuity or junction region is viewed as being composed

of three subregions: (i) a uniform guide !21, (ii) the dis-

continuity region proper, !&, and (iii. ) the second uniform

guide f12, not necessarily similar to Cl1. In the uniform

guides and in the discontinuity region ~d the electric fh?ld

must every where satisfy the vector Helmholtz equation:

1
–Vx VxE–h&,E=O, (1)
p,
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Fig. 1. The three subregions of a waveguide junction or discontinuity

problem: the discontinuity Od proper, flanked by two infinite waveguides
01 and 0,.

subject to boundary conditions of the following types:

(Vxlqxln=o (homogeneous Neumann on

magnetic wall), (2)

Exln=o (homogeneous Dirichlet on

perfect electric conductors),

(3)

Exln=Eo (inhomogeneous Dirichlet on

excitation planes). (4)

As is well known [7], solving the Helmholtz equation for

the electric field vector in the lossless case is equivalent

to extremizing the variational functional

The finite element methods contemplated here rely on this

formulation, and the boundary-marching method fits into

the general framework of variational methods very well.

The results given by Marcuvitz [8] are quite extensive

enough to serve for independent verification of all calcu-

lations.

III. DISCRETIZATION

In order to avoid the appearance of spurious modes,

orthospectral (mixed-order hexahedral) finite elements

cast in terms of the projection components [5] are uti-

lized. That is, the electric field vector E is written

E = lfE$ + lVEV + 1.-% (6)

where l?, 17, 1. are reciprocal unitaries of the local

coordina~es, and Et, Ev, E. are the covariant projection

components of E. Each component of the electric field

E in each element is approximated by element functions

(9)

Discretizing the entire region into finite elements and ap-

plying the standard finite element minimization procedure

to the functional [7], [9] gives the following system of

equations:

[ 1-:[Sl + /&[T] [E] = [0]. (lo)

Here [E] is a column matrix representing the nodal elec-

tric fields; [S] is the square matrix that results from the

curl-curl term in the functional, and [T] corresponds to

the dot-product term in the functional.

IV. BOUNDARY-MARCHING ALGORITHM

Four steps of the boundary-marching process are illus-

trated in Fig. 2. As indicated, the far-field and near-field

planes are initially placed at the same location; then the

far-field plane is moved away step by step, with the dis-

tance at each step growing larger as the far-field plane

recedes. To develop the computational algorithm, let fl”

be the volume of the initial segment of a uniform guide;

let r, and r2 be the two surfaces enclosing this segment

of the guide. Because the guide is uniform, r 1 and )72 are

congruent. The guide segment is discretized into finite

elements, with the following restriction on the manner of

subdivision: the placement of finite element nodes and

edges must leave r 1 and r2 congruent, i.e., the element

and node placement on r 1 must correspond exactly to that

on rz. On discretizing the segment into a number of finite

elements and minimizing the corresponding electric-field

functional, the following set of simultaneous equations is

obtained:

E: i: iih!l’” ‘1’)
The matrix equation had been partitioned so that the sub-
matrices identified by subscript 1 correspond to finite ele-

ment nodes located on plane 1 (the near-field plane), those

identified by subscript 2 correspond to finite element nodes

located on plane 2, and those identified by i are in the

interior of the guide segment. (The superscripts are of no

significance for the moment; they are introduced only for

notational consistency with further development. ) Thus

[E], represents the nodal electric fields on boundary sur-

face 1, [E]2 the nodal electric fields on boundary plane 2,
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Fig. 2. The boundary marching process. The finite guide length Ln doubles

at every step, reaching full floating-point precision after 5 or 10 steps.

and [E]! is the set of all nodal electric fields inside the

region. The internal field nodes [E] ~ are not of interest,

they are eliminated by a static condensation scheme [9],

[10]. The system of equations for waveguide segment fl”

is thereby reduced to the more compact form

k{:%x%]’03 ’12)
where the number of matrix rows and columns equals the

number of nodal variables on the bounding surfaces 171

and r2 only; the subscript i has disappeared altogether.

The new submatrices [S]:. are obtained from the nine

submatrices [W] ~. of the finite element functional by

[S1?l = [Will – [Wlli([Wl ii)-r[Wl il (13)

[s1% = [W]22 – [W]zi([w] ij)-l[w] ,2. (16)

The notation follows that for the full matrix representa-

tion: submatrix [S] ~. interrelates field components asso-

ciated with nodes on surface r~ of the condensed element

with those on surface r..

Now the coefficient matrix of (9) describes the inter-

relationship of electric field components at the two ends

of a fixed length of uniform guide, with no assumptions

as to the length (it need not be smaller than a wavelength),

A section of guide twice that length can therefore be mod-

eled without loss of accuracy by cascading two such ma-

trices. The description of a double-length segment of

guide is thus obtained by combining two identical seg-

ments as described by (9) and enforcing the field conti-

nuity on their common boundary:

F[sl’”1 [s];2 o

[

[s];l [s];l + [s];2 [s]~2

u 1

[E]! = O. (17)

o [s];, [s];2 [E]:

As before, the electric field at the internal nodes is of no

interest. It can be eliminated from further consideration,

removing [E] ~ by the same process of static condensation

as previously. What results is a description of the “super-

element” twice as long as the original one:

where the superscript 1 indicates that one doubling of the

guide length ‘has taken place. The four new submatrices

are obtained much as before:

[S1!1 = [sl?l – [sl!i([Sl!i)-l[Sl?l, (19)

[S112 = – [SIYi([Sll)-l[Sl!2, (20)

[Sljl = – [sllli([fi’?i)-l[Sl!l, (21)

[s]& = [S]R2– [S]]i([S]~)-1[5’] ~2. (22)

The new super-element representing the guide section is

twice as long, and therefore has twice the volume of the

original section: fll = 2f1°.

Further lengthening of the guide segment is achieved

by applying the same procedure recursively. After each

of k recursions, the matrix relating the excitation field on

boundary surface 1 to the field distribution on the far-field

plane can be expressed in terms of the submatrices of the

previous recursion as follows:

[s]f~ ‘ = [S]f~ – [S]~i([S]j)-l[S]~~ (22)

[s]:; l = – [sl!i([sl~)-l[sl!2 (23)

[s];: 1 = – [sl!i([sl~”)-l[sl;l (24)

[s];; 1 = [S]~z – [S]!i([$j)-l[S]$z. (25)

At each recursion step, the length of the super-element

(i.e., of the guide segment) is augmented by a factor of

2. Consequently, in the course of N recursions, the length

of the uniform guide in the propagation direction grows

by a factor of 2N. In effect the procedure is equivalent to

marching out the boundary of the uniform guide from the

excitation plame to the far-field plane, sufficiently far for

all evanescent modes to decay to a negligible level. The

method therefore provides a simple way for simulation

and investigation of wave propagation in any arbitrarily-

shaped guide. The advantage of the algorithm becomes
even more pronounced in the case of inhomogeneous di-
electric-loaded guides, where any competitive method

currently available (e. g., any integral equation method)

becomes too complicated, if not impossible.

To summarize the full computational algorithm: The

finite element matrix for a finite, generally quite short,
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length of guide is constructed using standard techniques.

It is partitioned into submatrices according to whether the

node numbers refer to bounding plane 1 (the near-field

plane), plane 2 (the farther plane), or the interior i. The

nine submatrices are then manipulated in an IV-step recur-

sion as follows.

Step 1: Initialize.

[S1!1 = [Will – [Wlli([Wlii)-l[Wl i 1

[5’1!2 = [Wllz – [Wlli([Wl ii)-l[Wl ,2

[s1!1 = [~121 – [~12i([~l it)-l[~l ,1

[s]~Z = [W]’2Z – [W]Zl([W]ii)-l[W] ~z.

Step 2: March out, fork =0, s s “ ,N– 1.

[s];; 1 = [Slkl – [Slfi([sl~”)-l[Sl~l

[S]f; 1= – [Sl!i([sl !)-1[s1!2

[s];: 1 = – [s]:l([s]:)-l[s];l

[s];: 1 = [s];2 –

Step 3: Record result.

[

[s]~~ [s]y2-

[s]:1 [s];2.

[slii([sl;)-l[s.
k
i2

(27)

The guide length grows as 2N, so only 20 recursion steps

will &n an initiai explicit guide model millimeters long

into the same number of kilometers.

V. NUMERICAL RESULTS

The boundary-marching technique has been extensively

tested on guides of several different cross-sectional

shapes. All test programs used Crowley-type orthospec-

tral elements [5] and were written in the Ada language.

Two computers were used: an 80386-based (MS-DOS)

machine for program development and debugging, fol-

lowed by a Cray X-MP supercomputer for subsequent

production runs. The algorithm is first tested here by in-

vestigating the decay behavior of the evanescent modes,

as the boundary of the far-field plane is marched out from

the excitation plane, Fig, 3 shows how the reflected waves

of the TEO, ~, TEO, z and TE2, o modes decay with guide

length in a typical rectangular waveguide. All computa-

tions were carried out in 64-bit arithmetic, so that notice-
able roundoff error accumulation in the fourteenth or fif-

teenth digit is to be expected. In fact, the roundoff error
falls substantially below that level in two of the modes.

The magnitude of the forward transmission of the scatter-

ing coefficient of the propagating mode (TE1, o mode), as

a function of the length of the waveguide is also shown

in Fig. 3. Clearly, about 6 or 7 recursions are more than

adequate in this case to make the guide “infinite” for all

practical purposes. Even quite near cutoff, about 20 or 30

recursion steps suffice, yielding a waveguide length of

105-108 times guide width.

To illustrate how the boundary-marching procedure can

Waveguide Length (mm)

6 3072 3.8E+30
I ,1!, ,111 I ,,ll!, ,1 I

1 10 100

Number of Recursions

F1~.3. Scatterinzof dominant andevanescentmodes in a rectangular guide

of-20. 32 mm x ‘1O. 16 mm cross-section, as a function of the ‘numb-er of

recursions or equivalent guide length.

be incorporated into waveguide analysis, Fig. 4 shows the

finite element scheme for the solution of a zero-thickness

capacitive window. This problem is well established, and

results may be found in Marcuvitz [8]. The reference plane

of the transmission and reflection parameters is calibrated

by using a matched “through” segment. The calibration

also eliminates any error that may arise as a result of sig-

nal loss or phase distortions in the waveguide segments.

The scattering parameters of the structure are first com-

puted with the discontinuity section replaced by a seg-

ment of empty waveguide of known finite length. The cal-

ibration factors are determined by setting the magnitude

of the forward transmission of the scattering coefficients

to unity and the phase to 90 degrees. Then the scattering

parameters of the stmcture including the discontinuity are

computed by replacing the “calibration segment” with

the discontinuity. Dividing the transmission and reflec-

tion parameters by the proper calibration factor, and sub-

tracting the phase offset from the phase angles of the pa-

rameters, one obtains the final scattering parameters at the

desired reference plane. By using the same segment length

for the calibration segment as for the discontinuity seg-

ment, the transmission and reflection parameters are cal-

ibrated to the plane where the zero-thickness window re-

sides. If desired, the parameters could also be calibrated

to some other reference plane, by choosing different
lengths for the calibration segment and the discontinuity

segment.

Phase and amplitude of the forward transmission coef-

ficient of the scattering parameters of the capacitive win-

dow are shown in Fig. 5, for different frequencies. The

results agree with the analytical approximation given by

Marcuvitz [8] to within 1–2 percent. Since the Marcuvitz

solution is not exact, it cannot be used to establish firm

error bounds. However, the finite element solution and

Marcuvitz’s approximation are thought to incur errors of

roughly similar magnitude, so their agreement is held to

confirm the validity of the bounda~-marching technique.
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Fig.4. Theclassical zero-thickness capacitive wil)dow problem, modeled

as the three regions of Fig. 1.
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Fig. 5. Forward transfer scattering parameter for the capacitive window
problem: comparison of curves given by Marcuvitz (solid line) with finite
element computations.

VI. CONCLUSIONS

A general recursive method has been proposed and val-

idated for creating finite element models of very great

lengths (thousands of free-space wavelengths) of arbitrar-

ily-shaped waveguide. The method is valid for any guide,

so long as a technique is available for constructing a finite

element model of a finite length of the guide. It is partic-

ularly useful for analysis of waveguide components and

discontinuity regions, where it permil.s truncation of the

finite element mesh very close to the discontinuity region

without compromising result accuracy. It does not intro-

duce any error beyond the discretization error inherited

from the finite element meshing; it is unconditionally sta-

ble, except possibly at frequencies very close to the cut-

off frequency of the lowest eigenmode, where the ratio of

free-space wavelength to guided wavelength approaches
the floating-point precision available. This algorithm ap-

pears to be particularly useful for discontinuity analyses

involving inhomogeneous dielectric-loaded guides, such

as finline and shielded microstrips, but further verifying

work is needed to establish what limiks there may be to

its use.
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