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Boundary-Marching Method for Discontinuity
Analysis in Waveguides of Arbitrary
Cross Section

S. L. Foo and P. P. Silvester, Fellow, IEEE

Abstract—A recursive algorithm previously used in diffusion
problems of geophysics and in electrostatics, is extended to wave
phenomena. It is used to construct a matrix representation for
an infinitely long waveguide of arbitrary cross-sectional shape.
This representation is used in finite element analysis of wave-
guide discontinuities. In numerical tests, scattering matrices for
the long guides converge to nearly full word-length in 6-7 re-
cursion steps, and discontinuity characteristics are within 1%-
2% of known results where they exist.

I. INTRODUCTION

INITE elements formulated in terrs of vector field

components have been widely used in characterizing
arbitrarily shaped waveguides. Recently, the finite ele-
ment method has also been successfully applied in ana-
lyzing some subclasses of waveguide discontinuity prob-
lems which are essentially two-dimensional, such as
E-Plane and H-plane discontinuities. However, a general
waveguide discontinuity is three-dimensional. It joins two
or more waveguides, possibly dissimilar, it has an arbi-
trary shape in all directions, and may contain inhomoge-
neous materials. In such cases, a full three dimensional
analysis is required. When using the finite element
method, one also needs to model the two infinite wave-
guides directly attached to the discontinuity section. The
most common way of dealing with such infinite guides is
to truncate the guides at a distance sufficiently far from
the discontinuity, with a large number of mesh nodes.
Proper boundary conditions are then applied at the trun-
cated surfaces, assuming that the field decays signifi-
cantly before reaching the truncations. This approach re-
sults in an undesirably large mesh and therefore is not
practical in many three-dimensional problems. For some
special cases, where the waveguide geometry is rectan-
gular, circular or elliptical, an equivalent boundary con-
dition, derived from analytically known guided modes,
may be used to truncate the mesh at a smaller distance
from the discontinuity. However, if the geometry of the
waveguide structure is more general, there is no analytic
solution for the waveguide and an equivalent boundary
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condition for the infinite guide section cannot be found
easily. This is especially true in the case of inhomoge-
neously dielectric-loaded waveguides.

This paper presents a very general finite element scheme
which can be used to model an arbitrarily-shaped guide
that may be inhomogeneous in the transverse direction.
The algorithm uses a simple recursive method to generate
a submatrix which relates the field characteristics on the
near-field surface to the field conditions on the far-field
surface. As a result, it can be used to truncate the finite
element mesh at a distance very close to the discontinuity
without losing any generality, for any arbitrarily-shaped
guide. This procedure resembles the ‘‘roof-raising’’ pro-
cess used in static and diffusion fields by Kisak, Silvester
and Telford [1], and the related but more general two-
dimensional ‘‘ballooning’ algorithm applied to electro-
statics problems by Silvester, Lowther, Carpenter and
Wryatt [2].

Waveguide analysis with the finite element method has
long been troubled by the appearance of spurious modes.
Although these are commonly encountered in eigenvalue
problems, it has been shown that spurious modes can af-
fect solutions to deterministic problems also [3], [4]. The
orthospectral (‘‘spectrally correct’’) elements obtained by
using mixed-order approximating functions on hexahedra
[5], [6] have been shown to produce solutions free of spu-
rious modes. All the results reported in this paper are
based on elements of this type and, as would be expected,
no spurious-mode corruption of solutions has been en-
countered.

II. VARIATIONAL FORMULATION

The general configuration of the class of problems con-
sidered here is illustrated in Fig. 1. The waveguide dis-
continuity or junction region is viewed as being composed
of three subregions: (i) a uniform guide Q4, (ii) the dis-
continuity region proper, §2,, and (iii) the second uniform
guide Q,, not necessarily similar to Q. In the uniform
guides and in the discontinuity region Q, the electric field
must everywhere satisfy the vector Helmholtz equation:

1
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Fig. 1. The three subregions of a waveguide junction or discontinuity
problem: the discontinuity Q, proper, flanked by two infinite waveguides
Q, and Q,.

subject to boundary conditions of the following types:

VXE)yx1,=0 (homogeneous Neumann on

magnetic wall), 2)
Ex1,=0 (homogeneous Dirichlet on
perfect electric conductors),
3
E x 1, =E, (inhomogeneous Dirichlet on
excitation planes). 4)

As is well known [7], solving the Helmholtz equation for
the electric field vector in the lossless case is equivalent
to extremizing the variational functional

ﬂF(E)=—;-SQ{—I%(VXE)-(V><E)

+ K¢,E - E} Q. (5)

The finite element methods contemplated here rely on this
formulation, and the boundary-marching method fits into
the general framework of variational methods very well.
The results given by Marcuvitz [8] are quite extensive
enough to serve for independent verification of all calcu-
lations.

III. DISCRETIZATION

In order to avoid the appearance of spurious modes,
orthospectral (mixed-order hexahedral) finite elements
cast in terms of the projection components [5] are uti-
lized. That is, the electric field vector E is written

E = I,E, + 1,E, + 1,E, ©6)

where 1;, 1,, 1, are reciprocal unitaries of the local
coordinates, and E;, E,, E, are the covariant projection
components of E. Each component of the electric field
E in each element is approximated by element functions

ab(E, n, v), al(E, 1, v), anE, 7, v):

18 ‘
E, = 2 EhLali, ), )
m=1
36 )
Ey = ZQE?na"m(é, 1, »), (8)
m=1
54
E,= 2 Enon ). ©

Discretizing the entire region into finite elements and ap-
plying the standard finite element minimization procedure
to the functional [7], [9] gives the- following system of
equations:
1

{—M— (8] + k%e,m} [E] = [0]. (10)
Here [E] is a column matrix representing the nodal elec-
tric fields, [S] is the square matrix that results from the

curl-curl term in the functional, and [7T] corresponds to
the dot-product term in the functional.

IV. BOUNDARY-MARCHING ALGORITHM

Four steps of the boundary-marching process are illus-
trated in Fig. 2. As indicated, the far-field and near-field
planes are initially placed at the same location; then the
far-field plane is moved away step by step, with the dis-
tance at each step growing larger as the far-field plane
recedes. To develop the computational algorithm, let Q°
be the volume of the initial segment of a uniform guide;
let I'; and T', be the two surfaces enclosing this segment
of the guide. Because the guide is uniform, T'; and T', are
congruent. The guide segment is discretized into finite
elements, with the following restriction on the manner of
subdivision: the placement of finite element nodes and
edges must leave I'; and T', congruent, i.c., the element
and node placement on I'} must correspond exactly to that
on I'5. On discretizing the segment into a number of finite
elements and minimizing the corresponding electric-field
functional, the following set of simultaneous equations is
obtained:

Wiy W1y Wl [1E]
W1, W1l W1 | |[E1Y =0 @1
Wl [Wl; Wiy [E],

The matrix equation had been partitioned so that the sub-
matrices identified by subscript 1 correspond to finite ele-
ment nodes located on plane 1 (the near-field plane), those
identified by subscript 2 correspond to finite element nodes
located on plane 2, and those identified by i are in the
interior of the guide segment. (The superscripts are of no
significance for the moment; they are introduced only for
notational consistency with further development.) Thus
[E]; represents the nodal electric fields on boundary sur-.
face 1, [E], the nodal electric fields on boundary plane 2,
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Fig. 2. The boundary marching process. The finite guide length L, doubles
at every step, reaching full floating-point precision after 5 or 10 steps.

and [E]° is thé set of all nodal electric fields inside the
region. The internal field nodes [E 12 are not of interest,
they are eliminated by a static condensation scheme [9],
[10]. The system of equations for waveguide segment Q°
is thereby reduced to the more compact form

(515, 1s1%] [1E1Y
0 0 0 =0’
[S]21 [S]22 [E]Z

where the number of matrix rows and columns equals the
number of nodal variables on the bounding surfaces I'
and I', only; the subscript i has disappeared altogether.
The new submatrices [S]), are obtained from the nine
submatrices [W],,, of the finite element functional by

(12)

(ST = Wy — WL(W1») ™' W1, (13)
81 = Wl — WL(AW1D) ' W], (14)
[SB) = Wy — WLAW1D ' Wla (15)
[S1% = Wl — WLAW1) ' Wla.  (16)

The notation follows that for the full matrix representa-
tion: submatrix [S]1Y, interrelates field components asso-
ciated with nodes on surface I',, of the condensed element
with those on surface I',.

Now the coeflicient matrix of (9) describes the inter-
relationship of electric field components at the two ends
of a fixed length of uniform guide, with no assumptions
as to the length (it need not be smaller than a wavelength).
A section of guide twice that length can therefore be mod-
eled without loss of accuracy by cascading two such ma-
trices. The description of a double-length segment of
guide is thus obtained by combining two identical seg-
ments as described by (9) and enforcing the field conti-
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nuity on their common boundary:

N [S1%, 0 E]}
[S19; (81 + 1815 S1L || [E1?|=0. (7)
0 [S13 (515, LIEDS

As before, the electric field at the internal nodes is of no
interest. It can be eliminated from further consideration,
removing [E]? by the same process of static condensation
as previously. What results is a description of the ‘‘super-
element’’ twice as long as the original one:

[[SHI [S]}z} [[E]%} o
1S [Shed LEL S
where the superscript 1 indicates that one doubling of the

guide length has taken place. The four new submatrices
are obtained much as before:

(18)

[SH; = [SI% — [SINSIH 'IS1, (19)
[S1i; = = [SINASTD IS, (0)
[S1h = — [SI(SID ~'ISTH. @
[S13 = [S1%, — [SISID ' IS1% (22)

The new super-element representing the guide section is
twice as long, and therefore has twice the volume of the
original section: Q' = 2Q°.

Further lengthening of the guide segment is achieved
by applying the same procedure recursively. After each
of k recursions, the matrix relating the excitation field on
boundary surface 1 to the field distribution on the far-field
plane can be expressed in terms of the submatrices of the
previous recursion as follows:

ST = ST — SHASTH 'ISTh (22)
15" = - ISHAS1H ' 1S1h (23)
[ = — [SIBAS1H ST 4
S = 1815 — SKASID ST, (29)

At each recursion step, the length of the super-element
(i.e., of the guide segment) is augmented by a factor of
2. Consequently, in the course of N recursions, the length
of the uniform guide in the propagation direction grows
by a factor of 2V. In effect the procedure is equivalent to
marching out the boundary of the uniform guide from the
excitation plane to the far-field plane, sufficiently far for
all evanescent modes to decay to a negligible level. The
method therefore provides a simple way for simulation
and investigation of wave propagation in any arbitrarily-
shaped guide. The advantage of the algorithm becomes
even more pronounced in the case of inhomogeneous di-
electric-loaded guides, where any competitive method
currently available (e.g., any integral equation method)
becomes too complicated, if not impossible.

To summarize the full computational algorithm: The
finite element matrix for a finite, generally quite short,
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length of guide is constructed using standard techniques.
It is partitioned into submatrices according to whether the
node numbers refer to bounding plane 1 (the near-field
plane), plane 2 (the farther plane), or the interior i. The
nine submatrices are then manipulated in an N-step recur-
sion as follows.

Step 1: Initialize.

[S15, = W1y — IWL(W1) " IW]
(51, = Wiy = [W1(IW1) 7' [W1,2
[S1 = [Why — WL (IW1» ™' [W1,

[S1% = Wl — [WL(AW1) ™' W],2.
Step 2: March out, fork =0, +++ ,N — 1.

ST = [ST5 — [STLASIH '[STh
1 = —ISTAS1H 'S 1%
S5 = — [SBASID 'ISTh
[S15" = [S15 — [SBAISIH IS,

Step 3: Record result.

{[sm [S]%} [[E]’q
(S 1815 LIETY
The guide length grows as 2V, so only 20 recursion steps

will turn an initial explicit guide model millimeters long
into the same number of kilometers.

@7

V. NUMERICAL RESULTS

The boundary-marching technique has been extensively
tested on guides of several different cross-sectional
shapes. All test programs used Crowley-type orthospec-
tral elements [5] and were written in the Ada language.
Two computers were used: an 80386-based (MS-DOS)
machine for program development and debugging, fol-
lowed by a Cray X-MP supercomputer for subsequent
production runs. The algorithm is first tested here by in-
vestigating the decay behavior of the evanescent modes,
as the boundary of the far-field plane is marched out from
the excitation plane. Fig. 3 shows how the reflected waves
of the TE; ,, TEy , and TE, o modes decay with guide
length in a typical rectangular waveguide. All computa-
tions were carried out in 64-bit arithmetic, so that notice-
able roundoff error accumulation in the fourteenth or fif-
teenth digit is to be expected. In fact, the roundoff error
falls substantially below that level in two of the modes.
The magnitude of the forward transmission of the scatter-
ing coefficient of the propagating mode (TE; o mode), as
a function of the length of the waveguide is also shown
in Fig. 3. Cleatly, about 6 or 7 recursions are more than
adequate in this case to make the guide ‘‘infinite’” for all
practical purposes. Even quite near cutoff, about 20 or 30
recursion steps suffice, yielding a waveguide length of
10°-10® times guide width.

To illustrate how the boundary-marching procedure can
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Fig. 3. Scattering of dominant and evanescent modes in a rectangular guide
of 20.32 mm X 10.16 mm cross-section, as a function of the number of
recursions or equivalent guide length.

be incorporated into waveguide analysis, Fig. 4 shows the
finite element scheme for the solution of a zero-thickness
capacitive window. This problem is well established, and
results may be found in Marcuvitz [8]. The reference plane
of the transmission and reflection parameters is calibrated
by using a matched ‘‘through’’ segment. The calibration
also eliminates any error that may arise as a result of sig-
nal loss or phase distortions in the waveguide segments.
The scattering parameters of the structure are first com-
puted with the discontinuity section replaced by a seg-
ment of empty waveguide of known finite length. The cal-
ibration factors are determined by setting the magnitude
of the forward transmission of the scattering coeflicients
to unity and the phase to 90 degrees. Then the scattering
parameters of the structure including the discontinuity are
computed by replacing the ‘‘calibration segment’’ with
the discontinuity. Dividing the transmission and reflec-
tion parameters by the proper calibration factor, and sub-
tracting the phase offset from the phase angles of the pa-
rameters, one obtains the final scattering parameters at the
desired reference plane. By using the same segment length
for the calibration segment as for the discontinuity seg-
ment, the transmission and reflection parameters are cal-
ibrated to the plane where the zero-thickness window re-
sides. If desired, the parameters could also be calibrated
to some other reference plane, by choosing different
lengths for the calibration segment and the discontinuity
segment.

Phase and amplitude of the forward transmission coef-
ficient of the scattering parameters of the capacitive win-
dow are shown in Fig. 5, for different frequencies. The
results agree with the analytical approximation given by
Marcuvitz [8] to within 1-2 percent. Since the Marcuvitz
solution is not exact, it cannot be used to establish firm
error bounds. However, the finite element solution and
Marcuvitz’s approximation are thought to incur errors of
roughly similar magnitude, so their agreement is held to

" confirm the validity of the boundary-marching technique.
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Fig. 4. The classical zero-thickness capacitive window problem, modeled
as the three regions of Fig. |.
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Fig. 5. Forward transfer scattering parameter for the capacitive window
problem: comparison of curves given by Marcuviiz (solid line) with finite
element computations.

VI. CONCLUSIONS

A general recursive method has been proposed and val-
idated for creating finite element models of very great
lengths (thousands of free-space wavelengths) of arbitrar-
ily-shaped waveguide. The method is valid for any guide,
so long as a technique is available for constructing a finite
element model of a finite length of the guide. It is partic-
ularly useful for analysis of waveguide components and
discontinuity regions, where it permits truncation of the
finite element mesh very close to the discontinuity region
without compromising result accuracy. It does not intro-
duce any error beyond the discretization error inherited
from the finite element meshing; it is unconditionally sta-
ble, except possibly at frequencies very close to the cut-
off frequency of the lowest eigenmode, where the ratio of
free-space wavelength to guided wavelength approaches
the floating-point precision available. This algorithm ap-
pears to be particularly useful for discontinuity analyses
involving inhomogeneous dielectric-loaded guides, such
as finline and shielded microstrips, but further verifying

work is needed to establish what limits there may be to

its use.
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